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Abstract
In this work, principally supplemented semimodules are defined which generalize supplemented semimodules. Some

properties of principally supplemented semimodules are investigated. We show that if A = A1 ⊕A2 is duo semimodule with A1
and A2 are principally supplemented semimodules, then A is principally supplemented. It is also proved that if A is an inde-
composable semimodule, then A is principally supplemented semimodule if and only if A is principally lifting semimodule.
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1. Introduction

Throughout this article, S denotes a commutative semiring with identity and A will denote an unitary
left S-semimodule. A (left) S-semimodule A (denoted by sA ) is a commutative additive semigroup
which has a zero element 0A, together with a mapping from S×A into A (sending (r,a) to ra ) such that
(r+ s)a = ra+ sa, r(a+ b) = ra+ rb, r(sa) = (rs)a and 0a = r0A = 0 for all a,b ∈ A and r, s ∈ S [8]. We
say that N is an S-subsemimodule of A, denoted by N ⩽ A, if and only if N is itself an S-semimodule.
A subsemimodule N ⩽ A is called small in A (we write N ≪ A ), if for each subsemimodule K ⩽ A,
with N+ K = A implies that K = A [13]. Rad(A) is the sum of all small subsemimodules of A [13]. A
semimodule A is called hollow, if all proper subsemimodules of A are small in A [5]. A is called simple if
it does not have a nontrivial subsemimodules. Let U,K ⩽ A. S. Wisbauer [14] study in details the notion of
supplemented modules. Here, we study on the notion of supplemented semimodules. A subsemimodule
K is called a supplement of U in A if it is minimal with respect to A = U+K[6, 9]. A subsemimodule K of
A is a supplement ( weak supplement ) of U in A if and only if A = U+ K and U ∩ K ≪ K ( L ∩ K ≪ A

). A semimodule A is called supplemented (weakly supplemented) if every subsemimodule U of A has a
supplement (weak supplement) in A [6], [7]. A is called lifting (or has the condition (D1) ) if, for every
subsemimodule N ⩽ A, there exists a decomposition A = X⊕ Y such that X ⩽ N and N ∩ Y is small in
A [10], [11]. A subsemimodule U ⩽ A is called a subtractive subsemimodule of A if a,a+ b ∈ U then
b ∈ U [3], [4], [8]. If every subsemimodule U of A is subtractive, then A is called subtractive semimodule.
If K is a subtractive subsemimodule of A, then A/K is an S-semimodule [[8], p.165]. In Section 2, we
give properties of small subsemimodules. Section 3 is devoted to introducing the concept of principally
supplemented semimodules. In Section 4, we study on principally semiperfect semimodules by using the
notions of principally supplemented and principally lifting semimodules.
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2. On Small Subsemimodules

Let A be semimodule. In [13] and [5], a subsemimodule N of M is called a small (or superfluous)
subsemimodule if, whenever M = N+ X, we have M = X. Small subsemimodule is named superfluous
subsemimodule in [13]. We begin by the following lemma.

Lemma 2.1. Let A be a semimodule. Then we have the following

(1) If L ≪ A and f : A → U is a homomorphism, then f(L) ≪ U. In particular, if L ≪ A ⩽ U, then L ≪ U.

(2) Let N,K be subsemimodules of A with K ≪ A and N ⩽ K. Then N ≪ A.

(3) Let A = A1 ⊕A2 and L1 ⩽ A1 ⩽ A,L2 ⩽ A2 ⩽ A. Then L1 ⊕ L2 is small in A1 ⊕A2 if and only if L1 is
small in A1 and L2 is small in A2.

Proof. (1) and (2) in [6, Lemma 2.4]. The proof of (3) similar to the proof that of [1, Proposition 5.20].

Lemma 2.2. Let U and V be subsemimodules of A. Then the following are equivalent:

(1) A = U+ V and U∩ V is small in V .

(2) A = U+ V and for any proper subsemimodule H of V ,A ̸= U+H.

Proof. (1) ⇒ (2) Let F,H ⩽ A with A = F+H. Then K = (K∩ F) +H. As K∩ F ≪ K,K = H.
(2) ⇒ (1) If K = (F∩K) +H where H ⩽ K, then A = F+K = F+H. By (2), H = K. Therefore ∩K ≪ K.

Definition 2.3. [7]. A semimodule A is called a distributive if for all subsemimodules H,K, and F, then
F∩ (H+K) = F∩H+ F∩K or F+ (H∩K) = (F+H)∩ (F+K).

Lemma 2.4. Let A = A1 ⊕A2 = K+N and K ⩽ A1. If A is distributive and K∩N ≪ N, then K∩N ≪ A1 ∩N.

Proof. Let A1 ∩N = (K∩N) + L. Since A is distributive, N = A1 ∩N⊕A1 ∩N. We have

A = K+N = K+A1 ∩N+A2 ∩N = K+ L+ (A2 ∩N)

and N = K∩N+ L+ (A2 ∩N). Since K∩N ≪ N,N = L⊕ (A2 ∩N).
This and N = (N∩A1)⊕ (N∩A2) and L ⩽ A1 ∩N imply L = A1 ∩N. Thus K∩N ≪ A1 ∩N.

3. On Principally Supplemented (Lifting) Semimodules

In this section, we introduce and study the concepts of principally supplemented and principally lift-
ing semimodules. Some properties of these semimodules are obtained. We give the following definitions
similar to that of [2].

Definition 3.1. A semimodule A is called principally supplemented if every cyclic subsemimodule U of
A, there is a subsemimodule V of A such that A = U+ V with U∩ V ≪ V .

Definition 3.2. Let U be a cyclic subsemimodule of A. A subsemimodule V is said to be a principally
supplement of U in A if U and V satisfy the conditions in Lemma 2.2, and the semimodule A is called be
principally supplemented if every cyclic subsemimodule of A has a principally supplement in A.

Definition 3.3. A semimodule A is called principally lifting (or PD1 ) if all cyclic subsemimodule N of
A there exists a decomposition A = H⊕ K with H ⩽ N and N ∩ K ≪ A. A semimodule A is called
principally lifting (or PD1 ) if for all a ∈ A,A has a decomposition A = N⊕H with N ⩽ Sa and (Sa)∩
H ≪ H.
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Remark 3.4. It is known, every supplemented semimodule and every lifting semimodule, hence every
principally lifting semimodule is principally supplemented. Here principally supplemented semimodules
but not supplemented and no principally lifting.

Example 3.5. (1) The Z-semimodule Q of rational numbers has no maximal subsemimodules. Every cyclic
subsemimodule of Q is small, hence Q is principally supplemented Z-semimodule. But Q is not supplemented.

(2) Suppose the Z-semimodule A = Q ⊕ (Z/2Z). We show A is principally supplemented semimodule but is
not supplemented. Let (n, t̄) ∈ A. We first show that (n, t̄)Z has a supplement in A. We divide the proof
into some cases:

Case I: n = 1 and t̄ = 1. It is rutin to prove that A = (1, 1)Z + (Q ⊕ (0)) with (1, 1)Z ∩ (Q ⊕ (0)) =
(1, 0)Z ≪ (Q ⊕ (0)).
Case II: n = 1 with t̄ = 0. Then (n, t̄)Z = (1, 0)Z ≪ Q ⊕ (0)).
Case III: n = 0 with t̄ = 1. Then (n, t̄)Z = (1, 0)Z ⩽ ⊕A.
Case IV: n ̸= 1, 0 with t̄ = 1. Let (a, b̄) ∈ A. We prove (a, b̄) ∈ (n, 1)Z + (Q ⊕ (0)). If b̄ = 1, then
(a , b̄) = (a, 1) = (n, 1) + (a − n, 0) ∈ (n, 1)Z + (Q ⊕ (0)). Suppose that ȳ = 0. Then (a, b̄) = (a, 0) =
(n, 1)0+ (a, 0) ∈ (n, 1)Z+ (Q⊕ (0)). Therefore (a, b̄) ∈ (n, 1)Z+ (Q⊕ (0)) and thus A = (n, 1)Z+ (Q⊕ (0)).
Since ((n, 1)Z)∩ (Q⊕ (0)) = (2n, 0)Z and (2n, 0)Z is small in Q⊕ (0). As a result that, in which cases, (n, t̄)Z
has a supplement in A and A is principally supplemented Z-semimodule. If A is supplemented Z-semimodule,
its direct summand Q will be a supplemented Z-semimodule. A contradiction. Therefore A is not supplemented.
(3) Suppose the Z-semimodules A1 = Z/2Z and A2 = Z/8Z. It is easy to know A1 and A2 are principally
supplemented. Let A = A1 ⊕ A2. Then A is principally supplemented semimodules Z-semimodule but is not
principally lifting. Take U1 = (1, 2)Z,U2 = (1, 1)Z,U3 = (0, 2)Z,U4 = (0, 4)Z,U5 = (1, 4)Z,A1 with A2 are
proper cyclic subsemimodules of A.A = A1 ⊕A2 = U2 ⊕U5 with U3,U4 are small subsemimodules of A. A =
U1 +U2 with U1 ∩U2 = U4 ≪ U2. Therefore A is principally supplemented semimodule. Since A = U1 +U2,U1
is not small in A and it is not a direct summand of A and without any nonzero values direct summand of A.
Therefore A is not principally lifting.

Let A be a semimodule. A subsemimodule N is called fully invariant if for each endomorphism f of A, f(N) ⩽ N.
The left S-semimodule A is called a duo semimodule provided every subsemimodule of A is fully invariant.

Lemma 3.6. Let a subtractive semimodule A =
⊕

i∈IAi be a direct sum of subsemimodules Ai(i ∈ I) and let U
be a fully invariant subsemimodule of A. Then U =

⊕
i∈I (U∩Ai).

Proof. For any j ∈ I, let Pj : A → Aj use the canonical projection as a symbol and let ij : Aj → A denote
inclusion. Then ijpj is an endomorphism of A and therefore ijpj(U) ⊆ U for each j ∈ I. Thus, it follows
U ⊆

⊕
j∈I ijpj(U) ⊆

⊕
j∈I

(
U∩Aj

)
⊆ U, so that U =

⊕
j∈I

(
U∩Aj

)
Remark 3.7. Finite direct sum of supplemented semimodules is again supplemented. But this is not the
case for principally supplemented semimodules. But it is the case for some classes of semimodules.

The following three theorems can be thought of as a generalization of [[2], Theorems 9,10 and 11].

Theorem 3.8. If A = A1 ⊕A2 is a decomposition of A with A1 and A2 are principally supplemented semimodules.
If A is a duo semimodule, then A is principally supplemented.

Proof. Let A = A1 ⊕A2 be a semimodule and Sa be a cyclic fully invariant subsemimodule of A. By
Lemma 3.6, Sa = ((Sa)∩A1) ⊕ ((Sa)∩A2). Let a = a1 + a2 where a1 ∈ A1,a2 ∈ A2. Then Sa1 =
(Sa) ∩A1 and Sa2 = (Sa) ∩A2. Since (Sa) ∩A1 and (Sa) ∩A2 are principal subsemimodules of A1 and
A2 respectively, there is N1 ⩽ A1 such that A1 = a1 +N1, (Sa1) ∩N1 ≪ N1 and N2 ⩽ A2 such that A2 =
(Sa2) +N2 and (Sa2) ∩N2 ≪ N2. Then A = (Sa1) + (Sa2) +N1 +N2 = (Sa) +N1 +N2. We prove (Sa)
∩ (N1 +N2) ≪ N1 +N2.

(Sa)∩ (N1 +N2) = ((Sa)∩A1 + (Sa)∩A2)∩ (N1 +N2)

⩽ (N1 ∩ (((Sa)∩A1) +A2)) + (N2 ∩ (((Sa)∩A2) +A1))

⩽ ((Sa)∩A1)∩ (N1 +A2) + ((Sa)∩A2)∩ (N2 +A1) .
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On the other hand ((Sa)∩A1) ∩ (N1 +A2) = (Sa1) ∩ (N1 +A2) ⩽ N1 ∩ ((Sa1) +A2) ⩽ (Sa1) ∩ (N1 +A2)

implies (Sa1)∩ (N1 +A2) = N1 ∩ ((Sa1) +A2) = (Sa1)∩N1. Similarly (Sa2)∩ (N2 +A1) = N2∩ ((Sa2) +A1)

= (Sa2)∩N2. Since (Sa1)∩N1 and (Sa2)∩N2 ≪ N1 and N2 respectively, by Lemma 2.1 (3), (Sa1)∩N1 +
(Sa2)∩N2 ≪ N1 +N2. By Lemma 2.1(2), (Sa)∩ (N1 +N2) ≪ N1 +N2.

Theorem 3.9. Let A be a principally supplemented duo subtractive semimodule. Then every direct summand of A
is a principally supplemented semimodule.

Proof. Let A = A1 ⊕A2 and a ∈ A1. Then there is K a subsemimodule such that A = Sa+K and (Sa)∩K

≪ K. Then A1 = Sa + (A1 ∩K). By Lemma 3.6, K = (K∩A1) ⊕ (K∩A2). We prove that (Sa) ∩ (K∩
A1) ≪ K ∩A1. Let F be a subsemimodule of K ∩A1 with K ∩A1 = (Sa) ∩ (K∩A1) + F. Then K = (Sa)
∩ (K∩A1) + F+ (K∩A2) = ((Sa)∩K) + F+ (K∩A2). Since (Sa)∩K ≪ K,K = F⊕ (K∩ A2 ). It follows that
F = K∩A1 this is required.

Theorem 3.10. Let A be a principally supplemented distributive semimodule. Then every direct summand of A is
a principally supplemented semimodule.

Proof. Let A = A1 ⊕A2 and a ∈ A1. There is a subsemimodule K of A with A = Sa+ K and (Sa) K ≪ K.
Then A1 = (Sa) + (A1 ∩K) since A is distributive. By Lemma 2.4, (Sa) ∩K ≪ A1 ∩K.

Definition 3.11. [7]. Let A be a semimodule. Then A is called a principally semisimple if each cyclic
subsemimodule is direct summand of A.

Remark 3.12. Each semisimple semimodule is principally semisimple, and each principally semisimple
semimodule also principally supplemented.

Proposition 3.13. Let A be a principally supplemented distributive subtractive semimodule. Then A/Rad(A) is a
principally semisimple semimodule.

Proof. Since A is subtractive, so A/Rad(A) is a semimodule. Let a ∈ A. There is a subsemimodule
A1 such that A = Sa +A1 and (Sa) ∩A1 ≪ A1. Then A/Rad(A) = [(Sa+Rad(A))/Rad(A)] + [(A1+
Rad(A))/Rad(A)]. Now we prove that (Sa+Rad(A)) ∩ (A1 + Rad(A)) = Rad(A). The distributivity
of A shows (Sa+Rad(A)) ∩ (A1 + Rad(A)) = (Sa) ∩ A1 + Rad(A). Since (Sa) ∩ A1 ≪ A1, so small in
A, (Sa) ∩A1 ⩽ Rad(A). Thus, A/Rad(A) = [(Sa+Rad(A))/Rad(A)]⊕ [A1 + Rad(A)/Rad(A)]. So any
principal subsemimodule of A/Rad(A) is direct summand.

Theorem 3.14. Let A be a principally supplemented semimodule. Then = A1 ⊕ A2, where A1 is semisimple
semimodule with A2 is a semimodule and Rad (A2) ≪ A2.

Proof. By Zorn’s Lemma we may find a subsemimodule A1 of A such that ad(A)⊕A1 ≪ A. We prove A1
is semisimple. Let a ∈ A1. Since A is principally supplemented, there is a subsemimodule L of A such
that A = Sa+ L and (Sa)∩ L ≪ L. Then (Sa)∩ L = 0. Let N be a maximal subsemimodule of Sa. If N is
unique maximal subsemimodule in Sa, then it is small, hence small in Sa and so in A. This is not possible
since (Sa) ∩ Rad(A) = 0. Hence there is t ∈ Sa such that Sa = N+ St. We assume that N ∩ (St) = 0.
Apart from that, let 0 ̸= t1 ∈ U ∩ (St). By hypothesis there exists F1 such that A = St1 + F1 with (St1)∩
F1 is small in A. Thus A = St1 ⊕ F1 since (St1) ∩ F1 ⩽ U ∩ Rad(A) = 0. Therefore Sa = St1 ⊕ ((Sa)∩ F1)

and U = St1 ⊕ (U∩ F1). If U ∩ F1 is nonzero, let 0 ̸= t2 ∈ U ∩ F1. By hypothesis there exists F2 such that
A = St2 + F2 with (St2) ∩ F2 is small in A. Thus A = St2 ⊕ F2 since (St2) ∩ F2 ⩽ U∩ Rad(A) = 0. Then
U∩ F1 = (St2)⊕ (U∩ F1 ∩ F2). Thus Sa = St1 ⊕ St2 ⊕ ((Sa)∩ F1 ∩ F2) and U = St1 ⊕ St2 ⊕ (U∩ F1 ∩ F2). If
U∩ F1 ∩ F2 is nonzero, similarly there exists 0 ̸= t3 ∈ U∩ F1∩ F2 and F3 ⩽ A such that A = St3 ⊕ F3. Then
Sa = St1 ⊕ St2 ⊕ St3 ⊕ ((Sa)∩ F1 ∩ F2 ∩ F3) and U = St1 ⊕ St2 ⊕ St3 ⊕ (U∩ F1 ∩ F2 ∩ F3). This process must
terminate at a finite step, say n. At this step Sa = St1 ⊕ St2 ⊕ St3 ⊕ . . . ⊕ Stn and so Sa = U since at nth

step we must have U ∩ F1 ∩ F2 ∩ . . . ∩ Fn ⩽ (Sa) ∩ F1 ∩ F2 ∩ . . . ∩ Fn = 0. This is contradiction. There is
t ∈ Sa such that Sa = U⊕ (St). Then St is simple semimodule. Therefore each cyclic subsemimodule of A1
contains a simple subsemimodule. As in the proof of [[1], Lemma 9.2], we show that A1 is semisimple.
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Definition 3.15. [7]. A semimodule A is called principally hollow ( P-hollow) if every proper cyclic
subsemimodule of A is small in A.

Proposition 3.16. For an indecomposable semimodule A. Consider the next statements:

(1) A is a principally lifting semimodule.

(2) A is a principally hollow semimodule.

(3) A is a principally supplemented semimodule.

Then (1) ⇔ (2) and (2) ⇒ (3).

Proof. (1) ⇒ (2) Let X be a proper cyclic subsemimodule of A. By (1), there exists a decomposition A =
N⊕ K such that N ⩽ X and X ∩ K ≪ K. Thus A = X+ K. By assumption, either K = 0 or N = 0. If K =
0 , then A = X+ 0 = X contradiction. Thus N = 0, and then A = N+ K = 0 + K = K, hence X = X∩
A = X∩K ≪ K = A, i.e., X ≪ A. Therefore (2), holds.

(2) ⇒ (1) Let a ∈ A and Sa be a proper cyclic subsemimodule of A. By (2) Sa ≪ A. We will take U =
0 and V = A to show that A = U⊕ V ,U ⩽ Sa and (Sa)∩ V ≪ V . Therefore (1) holds.

(2) ⇒ (3) Let a ∈ A. By (2) every cyclic subsemimodule is hollow. Thus A = Sa+A and (Sa) ∩A ≪ A.
So A is a principally supplemented.

Note that Proposition 3.16, (3) =⇒ (2) does not hold in general. There exists an indecomposable
principally supplemented semimodule but not principally hollow.

Example 3.17. Let F be a semifield and x and y commuting indeterminates on F. Suppose a polynomial semiring
S = F[x,y], the ideals I1 =

(
x2
)

and I2 =
(
y2

)
of S, and a semiring R = S/

(
x2,y2

)
. When A = Rx̄+Rȳ. Therefore

A is indecomposable R-semimodule, principally supplemented but not principally hollow.

The concept of weakly principally supplemented module introduce in [2]. Similarly, we now give the
following definition:

Definition 3.18. Let A be a semimodule. A is called weakly principally supplemented semimodule if for
each a ∈ A there exists a subsemimodule H such that A = Sa+H and (Sa)∩H ≪ A.

Remark 3.19. Every weakly supplemented semimodule is weakly principally supplemented.

Definition 3.20. [7]. The semimodule A is called a⊕-principally supplemented if for each a ∈ A there is
a direct summand K of A such that A = Sa+K and (Sa)∩K ≪ K.

Remark 3.21. (1) Every
⊕

-supplemented semimodule is
⊕

-principally supplemented and obviously every
⊕-principally supplemented is weakly principally supplemented. Through a forthcoming work authors
looking for the correlations among principally supplemented semimodules, weakly principally supple-
mented semimodules and ⊕-principally supplemented semimodules at finely.

Definition 3.22. [7]. A semimodule A is said to have the summand sum property (SSP) if the sum of two
direct summands of A is again a direct summand of A.

Definition 3.23. [7]. A semimodule A is called refinable if for any subsemimodules F,H of A with A =
F+H, there exists a direct summand F′ of A such that F′ ⩽ F and A = F′ +H.

Theorem 3.24. Consider the following cases, a refinable semimodule A.

(1) A is principally lifting.

(2) A is principally ⊕-supplemented.
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(3) A is principally supplemented.

(4) A is principally weakly supplemented.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (2).
If A has the summand sum property then (4) ⇒ (1).

Proof. By definitions (1) ⇒ (2) ⇒ (3) ⇒ (4) already clear.
(4) ⇒ (2) Suppose A is principally weakly supplemented semimodule with a ∈ A. By (4) there is a

subsemimodule P of A with A = Sa+ P and (Sa)∩ P ≪ A. By hypothesis there exists a direct summand
H of A with H ⩽ P and A = Sa+H = H′ ⊕H for some subsemimodule H′ of A. We claim that (Sa)∩
H ≪ H. For if (Sa)∩H+K = H for some subsemimodule K of H, then A = H′ + ((Sa)∩H) +K = H′ ⊕K

as (Sa)∩H ≪ A. So K = H. Therefore A is principally
⊕

-supplemented.
(4) ⇒ (1) Suppose A has the summand sum property and let a ∈ A. By (4) there exists a subsemimod-

ule P such that A = Sa+P and (Sa)∩P ≪ A. By assumption there is a direct summand H1 of A such that
H1 is contained in P and A = Sa+H1 = H′

1 ⊕H1. Since H1 is direct summand and (Saa)∩ ≪ A, ( Sa)∩
H1 ≪ H1. Again by assumption there is a direct summand H2 of A such that H2 is contained in Sa

and A = H1 +H2 = H2 ⊕H′
2. By the summand sum property H2 ∩H1 is a direct summand of A,A =

(H2 ∩H1)⊕ K for some subsemimodule K of A. Then H1 = (H1 ∩H2)⊕ (K∩H1) and A = H2 ⊕ (K∩ H1).
It is evident that (Saa∩ (K∩H1) is small in K∩H1 since (Sa)∩ (K∩H1) ⩽ (Sa)∩H1 ⩽ H1 and (Sa) ∩H1 is
small in H1, (Sa) ∩ (K∩H1) ≪ H1 and so small in K∩H1 as K∩H1 is a direct summand of A.

4. Applications

In this section, we introduce with a study some properties of principally semiperfect semimodules.

Definition 4.1. [13]. A homomorphism f : A → B of left S-semimodules is called k-quasiregular if
whenever K ⩽ A,a ∈ A\K,a′ ∈ K, and f(a) = f (a′) there exists s ∈ Ker f such that a = a′ + s.

Definition 4.2. [13]. Let A be a left S-semimodule. A left S-semimodule P together with a S homomor-
phism f : P → A is called a projective cover of A if:

(1) P is projective,

(2) f is small, epimorphic and k-quasiregular.

Definition 4.3. [12]. A semiring S is called perfect if every S-semimodule (or every simple S-semimodule)
has a projective cover. A semiring is called semiperfect if every finitely generated semimodule has a
projective cover.

Definition 4.4. [7]. A semimodule A is called semiperfect if every factor semimodule of A has a projective
cover. A semiring S is called semiperfect in case the left S-semimodule S is semiperfect.

Definition 4.5. [7]. A semimodule A is called principally semiperfect if every factor semimodule of A by
a cyclic subsemimodule has a projective cover. A semiring S is called principally semiperfect in case the
left S-semimodule S is principally semiperfect.

Remark 4.6. Every semiperfect semimodule is principally semiperfect.

Theorem 4.7. Let A be a projective subtractive S-semimodule such that every S-epimorphism of A into a factor
semimodule of A is k-quasiregular. Then the following are equivalent:

(1) A is principally semiperfect.

(2) A is principally supplemented.
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Proof. (1) ⇒ (2) Let a ∈ A. Since A is a subtractive semimodule, so A/Sa is an S-semimodule [8, p.165].
By (1), A/Sa has a projective cover h : T → A/Sa. There exists g : T → A such that h = πg, where
π : A → A/Sa is the natural epimorphism. Let a ∈ A. There is x ∈ T with π(a) = h(x) since h is
epimorphism. So π(a) = h(x) = π(g(x)). Since π is the natural epimorphism of A then by assumption
π is k-quasiregular. Hence, there exists r ∈ ker(π) = Sa such that a = g(x) + r. Therefore A = g(T)+
Sa. We prove g(T) ∩ (Sa) is small in g(T). It suffices to show that g(T) ∩ (Sa) = g(ker(h)) since ker(h)
is small in T and any homomorphic image of small semimodules is small under epimorphic maps. Let
x ∈ ker(h). Then πg(x) = h(x) = 0. therefore g(x) ∈ ker(π) = Sa. Hence g(ker(h)) ⩽ g(T)∩ (Sa). Let
sa ∈ g(T) ∩ (Sa) and g(x) = sa for some x ∈ T . Then h(x) = π(g(x)) = π(sa) = 0. Therefore x ∈ ker(h)
and so g(T)∩ (Sa) ⩽ g(Ker(h). It follows that g(T)∩ (Sa) = g(k er(h)) and g(T) is a supplement of Sa.

(2) ⇒ (1) Let a ∈ A. By (2) there is N ⩽ A such that A = Sa+N and ( Sa) ∩N is small in N. Let
f : A → A/(Sa) defined by f(y) = n where y = sa+ n with sa ∈ Sa,n ∈ N, and π : A → A/(Sa) the
natural epimorphism. There exists g : A → A with fg = π. Then A = g(A) + (Sa) ∩N. Hence A =
g(A) ∼= A/Ker(g). As A is projective A = ker(f)⊕ L and L is projective. Let (fg)L denote the restriction
of fg on L. Then ker(fg)L = (Sa)∩N and so (fg)L : L → A/(Sa) is a projective cover of A.

Similar to the notion of semiregular rings of [2], we now give the definition of semiregular semiring.

Definition 4.8. Let S be a semiring. S is said to be semiregular semiring if every cyclic presented S

semimodule has a projective cover.

Theorem 4.9. Let S be a subtractive semiring such that every S-epimorphism of a S-semimodule S into a factor
semimodule of S is k-quasiregular the following are equivalent:

(1) S is principally semiperfect.

(2) S is principally lifting.

(3) S is semiregular.

(4) S is principally supplemented.

Proof. (1) ⇒ (2) Assume that b ∈ S. Since S is a subtractive semiring, so S/Sb is an S-semimodule [[8],

p.165]. By (1) S/Sb has a projective cover T
h→ S/Sb so that (h) ≪ T . Let S

f→ S/Sb be the natural
epimorphism. Then there exists a map g such that h = fg. Then S = g(T) + Sb and g(T) ∩ (Sb) =
g(ker(h)) ≪ g(T) since homomorphic images of small subsemimodules are small.

(2) ⇒ (3) Suppose S is principally lifting. Let b ∈ S. Then there exists a direct summand left ideal H
of Sb with S = H⊕K and (Sb)∩K ≪ K. Then Sb = H⊕ (Sb)∩K and (Sb)∩K ≪ A. By [18, Theorem 3.5],
S is semiregular.

(3) ⇒ (4) Suppose S is semiregular. Let b ∈ S and f : S → S/Sb natural epimorphism. By assumption
S/Sb has a projective cover h : T → S/Sb. There is g : T → S such that h = fg. Then S = g(T) +
(Sb) and g(T) ∩ (Sb) ≪ g(T) since g(T) ∩ (Sb) = g(Ker(h) and Ker(h) ≪ T . Therefore S is principally
supplemented.

(4) ⇒ (1) By Theorem 4.7, is clear (Since S is a projective S-semimodule).

Example 4.10. Let S =

{[
a b

0 c

]
| a,b, c ∈ Z4

}
denote the semiring of upper triangular matrices over integers.

It is easy to check that principal left ideals of S as either small in S or a direct summands of S. Therefore S is
principally supplemented left S-semimodule. Let e12 denote the matrix unit having 1 at (1, 2) and zero elsewhere.
Let I = e12S. Then I is small left ideal and Jacobson radical J(S) of S is equal to I. Therefore S/J(S) is not
semisimple. Hence S is not semiperfect semiring.

Theorem 4.11. Let A be a projective subtractive semimodule with Rad(A) is small in A. Consider following
conditions:
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(1) A is principally supplemented.

(2) A/Rad(A) is principally semisimple.

Then (1) =⇒ (2). If A is refinable semimodule then (2) ⇒ (1).

Proof. (1) ⇒ (2) Since A is principally supplemented semimodule, A/Rad(A) is principally semisimple
by Proposition 3.13.

(2) ⇒ (1) Assume that Sa be any cyclic subsemimodule of A. By (2) There is a subsemimodule K

of A such that A/Rad(A) = [((Sa) + Rad(A))/Rad(A)]⊕ [K/Rad(A)]. Then T = (Sa) + K and ((Sa)+
Rad(T)) ∩ K = (Sa) ∩ K + Rad(T)] = Rad(T). Since T = (Sa) + K, being A refinable there is a direct
summand N of A such that N ⩽ K and A = (Sa) +K = (Sa) +N = L⊕N. (Sa) ∩K ≪ A, so, it is small in
K. Thus K is a direct summand.

5. Conclusion

In this paper, we have defined and studied the concepts of principally supplemented (lifting) semi-
modules. We observed that if A is an indecomposable semimodule, then A is a principally lifting semi-
module if and only if A is a principally lifting. Let S be a subtractive semiring such that every S epi-
morphism of a S-semimodule S into a factor semimodule of S is k-quasiregular then S is principally
semiperfect if and only if S is principally lifting if and only if S is semiregular if and only if S is princi-
pally supplemented.
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